

MODULO PRINCIPAL ESP32

Guía de usuario

DAVINCI

DESCRIPCIÓN GENERAL

El módulo principal es el que contiene el micro controlador, en este caso el ESP32, se encargara del procesamiento, comunicación con los módulos accesorios y cuenta con conectividad WiFi y bluetooth y 2 núcleos de 32bits. Sus pines llamados GPIOs en esta placa se distribuyen en los 6 lados del hexágono, de este modo cada módulo accesorio se conectará del lado o los lados cuyos GPIOs sean compatibles con su función. También tiene un sensor de temperatura, sensor de nivel de luz y led RGB, los cuales te servirán para ensayar tus primeros proyectos de IoT; estos son fáciles de usar ya que en la misma PCB se indica los GPIOs en los que estos están conectados, sin embargo, en este documento encontraras todos los detalles.

PINOUT

DAC ADC ALIMENTACIÓN 12C VUART PROPOSITO GENERAL SPI

PERIFERICOS

INSTALACION

- Instalar el IDE Arduino 1.8.16 o superior https://downloads.arduino.cc/arduino-1.8.19-windows.exe
- En el IDE de Arduino ir a Archivo -> preferencias -> Gestor de URLs adicionales de Tarjetas
- · Pegar el siguiente enlace:

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json

INSTALAMOS LA PLACA ESP32

- Ir a Herramientas -> Placa: -> Gestor de tarjetas...
- En la barra de busqueda escribir: ESP32
- Por ultimo click en instalar.

CONFIGURAMOS EL IDE PARA PROGRAMAR EL ESP32

Ir a Herramientas -> Placa: -> ESP32 Arduino -> ESP32 Dev Module

YA CASI LISTO...

Asegúrate de que las casillas en el recuadro las tengas igual que en la siguiente imagen...

TU PRIMER PROGRAMA

Suponiendo que solo tienes el modulo principal DA VINCI ORIGAMI ESP32 y todo lo configuraste bien, copia el siguiente código en el IDE de Arduino. Este código alternara los leds rojo, verde y azul y mostrara los datos de nivel de luz y temperatura en el monitor serial.

```
//Definimos los pines del sensor de luz, de temperatura y del led RGB
#define luzPin 36
#define tempPin 39
#define R 25
#define G 33
#define B 26
//creamos variables para luz y temperatura
float luz = 0;
float temp = 0;
void setup(){
//iniciamos la comunicacion serial a 9600 baudios
Serial.begin(9600);
//configuramos los pines del led RGB como salida
pinMode(R, OUTPUT);
pinMode(G, OUTPUT);
pinMode(B, OUTPUT);
void loop() {
//leemos el pin del sensor de temperatura
temp = analogRead(tempPin);
//convertimos el dato a grados centigrados
temp = (temp*125.0)/4096.0;
//este ciclo se cumplira 200 veces
for (int i = 0; i < 200; i + +){
 //sumamos 200 veces el valor del pin del sensor de luz
 luz = luz + analogRead(luzPin);
// dividimos el valor del nivel de luz entre 200 (promediamos)
luz = luz/200.0;
//el valor crudo es de 0 a 4096, lo convertimos de 0 a 100
luz = (luz*100.0)/4096.0;
//imprimimos los valores de luz y temperatura
Serial.print("LUZ= ");
//imprimimos el valor de la luz y lo configuramos a 1 decimal
Serial.print(luz,1);
Serial.print(" TEMP= ");
//imprimimos el valor de la temperatura y por defecto tendra 2 decimales
Serial.println(temp);
//encendemos el led Rojo y apagamos los demas
digitalWrite(R, HIGH);
digitalWrite(G, LOW);
digitalWrite(B, LOW);
delay(100); //esperamos 100 milisegundos
//encendemos el led Verde y apagamos los demas
digitalWrite(R, LOW);
digitalWrite(G, HIGH);
digitalWrite(B, LOW);
delay(100); //esperamos 100 milisegundos
//encendemos el led Azul y apagamos los demas
digitalWrite(R, LOW);
digitalWrite(G, LOW);
digitalWrite(B, HIGH);
delay(100); //esperamos 100 milisegundos
***************FIN DEL PROGRAMA**********
```


